Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7419, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795757

RESUMO

Recent studies on water retention behaviour of biochar amended soil rarely considers the effect of pyrolysis temperature and also feedstock type into account. It is well known that pyrolysis temperature and feedstock type influences the physical and chemical properties of biochar due to stagewise decomposition of structure and chemical bonds. Further, soil density, which is in a loose state (in agricultural applications) and dense (in geo-environmental engineering applications) can also influence water retention behaviour of biochar amended soils. The major objective of this study is to investigate the water retention properties of soil amended with three different biochars in both loose and dense state. The biochars, i.e. water hyacinth biochar (WHB), chicken manure biochar (CMB) and wood biochar (WB) were produced in-house at different pyrolysis temperature. After then, biochars at 5% and 10% (w/w%) were amended to the soil. Water retention behaviour (soil suction and gravimetric water content) was studied under drying and wetting cycle simulated by varying relative humidity (RH, 50-90%). Results show that 10% WHB produced at 300 °C were found to possess highest water retention. CMB is found to possess higher water retention than WB for 10% amendment ratio. In general, the addition of three biochars (at both 300 °C and 600 °C) at 10% (w/w) significantly improved the water retention at all suction ranges in both loose and dense compaction state as compared to that of the bare soil. The adsorption (wetting) and desorption (drying) capacity of biochar amended soils is constant at corresponding RH.

2.
Sci Rep ; 10(1): 11330, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647117

RESUMO

Generated hazardous or toxic waste posses a serious threat if dumped into ponds or low lying areas which leads to contamination, this necessitates the effective landfill liner system. Mainly compacted clayey soils are used as an engineered barrier. Recently, composite materials have gained popularity as landfill liner materials, including the use of waste materials amended with low permeable soils. Though, studies on the composite optimum mix and its corresponding thickness are very scarce. Here, we evaluated the unconfined compressive strength and hydraulic conductivity of fly ash-bentonite composites. Efforts were also made to determine the thickness of landfill liner composite using a finite difference method (i.e. MATLAB). The results reveal that composite consists of 30% bentonite and 70% fly ash is suitable for landfill liner, which meets strength and permeability criteria. Numerical simulation for five major contaminants shows that the composite plays a crucial role in reducing the leaching of heavy metals and suggests an optimum thickness in the range of 126-154 cm. Overall, the findings of the study indicate that fly ash-bentonite composite can be used to solve real-life challenges in a sustainable way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...